An Algorithm for Checking Regularity of Interval Matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Algorithm for Checking Regularity of Interval Matrices

Checking regularity (or singularity) of interval matrices is a known NP-hard problem. In this paper a general algorithm for checking regularity/singularity is presented which is not a priori exponential. The algorithm is based on a theoretical result according to which regularity may be judged from any single component of the solution set of an associated system of linear interval equations. Nu...

متن کامل

A Note on Checking Regularity of Interval Matrices

It is proved that two previously known sufficient conditions for regularity of interval matrices are equivalent in the sense that they cover the same class of interval matrices.

متن کامل

An Optimal Algorithm for Checking Regularity

We present a deterministic algorithm A that, in O(m2) time, verifies whether a given m by m bipartite graph G is regular, in the sense of Szemerédi [E. Szemerédi, Regular partitions of graphs, Problèmes Combinatoires et Théorie des Graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976) (Paris), Colloques Internationaux CNRS n. 260, 1978, pp. 399–401]. In the case in which G is not regular e...

متن کامل

AE regularity of interval matrices

Consider a linear system of equations with interval coefficients, and each interval coefficient is associated with either a universal or an existential quantifier. The AE solution set and AE solvability of the system is defined by $\forall\exists$-quantification. Herein, we deal with the problem what properties must the coefficient matrix have in order that there is guaranteed an existence of a...

متن کامل

An Algorithm for Checking Strong Regularity of Matrices in Bottleneck Algebras

Let (B, ≤) be a dense, linearly ordered set without maximum and minimum and (⊕, ⊗) = (max, min). An n × n matrix A = (a ij) over B is called (a) strongly regular if for some b the system A ⊗ x = b is uniquely solvable; (b) trapezoidal if the inequality a ii > i k=1 n l=k+1 a kl holds for all i = 1, .., n. We show that a square matrix is strongly regular if and only if it can be transformed to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 1999

ISSN: 0895-4798,1095-7162

DOI: 10.1137/s0895479896313978